The ICARDA Program for Breeding FHB Resistance in Barley

Flavio Capettini et al.

2008 National Fusarium Head Blight Forum

The CGIAR Centers

ICARDA/CIMMYT Latin America Barley Breeding Program - México

- Started in 1970-72 with Dr. Norman Borlaug
 - Andean Countries for food & feed
- Conducted later by Drs.:
 - Enrique Rodriguez (1976-1984)
 - Food & feed quality lysine
 - Hugo Vivar (1984-2000)
 - Multiple disease resistance, yield
 - Flavio Capettini (2000-2008)
 - Multiple disease resistance, yield, malting
- Followed the same shuttle breeding scheme of CIMMYT's bread wheat program

Number of crosses (Single + Top) made in the Barley Program from 1998-2006.

		Year								
		1998	1999	2000	2001	2002	2003	2004	2005	2006
Cycle	Туре									
Obregón and Toluca										
	Single	329	469	641	804	1207	261	688	1012	563
	Тор	920	516	616	940	263	50	282	80	144
	Total	1249	985	1257	1744	1470	311	970	1092	707
Winter Toluca		233	163	156	104	175	-	94	44	58

Latin America Regional Program Outputs

- Germplasm requested by 75 countries in 27 years, 40-50 countries per year
- Varieties released in 20 countries
- Possible wide adaptation among more favorable environments
 - Barleys resistant to 5, 7 or more major diseases
- High yield potential and attractive agronomic types

Objectives

Barley types

 Six and two-row
 Covered and Hulless
 Spring
 Spring x winter

Objectives

Disease resistance

- Scald (Rhyncosporium secalis)
- Stripe rust (*Puccinia striiformis*)
- BYDV
- Leaf rust (*Puccinia hordei*)
- FHB (*Fusarium graminearum*)
- Net blotch (Dreschlera teres)
- Spot blotch (*Bipolaris sorokiniana*)
- Stem rust (Puccinia graminis fsp. hordei)

Objectives

- Disease resistance
 - Covered smut (Ustilago hordei)
 - Loose smut (Ustilago nuda)
 - Russian wheat aphid (*D. noxia*)
 - Enanismo de Nariño
 - Bacteria (Xantomonas campestris, Pseudomonas syringae)

Leaf Rust at Ciudad Obregón

Spreader rows inoculatedWhole breeding program infected

Stripe Rust at Toluca

- Natural infection in segregant material
- Inoculation of spreaders at nurseries

Scald Severity at Toluca

BYDV

- Infection of aphids with PAV, MAV, RPV
 Application of aphids to plots
- Aphid-free check with insecticide

FHB - Background

• Caused by:

- Fusarium graminearum
- Fusarium culmorum
- Fusarium avenaceum
- Fusarium poae

FHB - Background

- Genetics
 - Quantitatively inherited
 - No immunity
 - Very high GxE
 - Intermediate to low selection effectiveness

ICARDA FHB Program

- 5000 barley accessions screened in 1986
- Only 23 found with resistance
- 2-3 sources pyramided in elite lines
- 'Gobernadora' released as Zhenmai-1 in China
- Gobernadora used in mapping studies (Zhu et al., 1999)
- Collection of resistance sources made available to other programs when was mostly needed – after 1993
- Searching for novel sources of resistance Barley Program & GRU are screening entries in Mexico
- Variability is being found for FHB resistance and also other diseases yellow rust, scald, etc.

Screening Enviroments

- Toluca
 - El Batán
 - Hanghzou, China
 - Brazil, Ecuador, Peru, Uruguay, USA, etc.

FHB Genetics

Popula-	1995	19	96		19	97		AII
tion	Crk	Crk	Мо	StP	Crk	Мо	Hz	Environ-
								ments
		-	F	FHB	-	-		
	0.62	0.26		0.43	0.77		0.51	0.48
2		0.48	0.84		0.63		0.75	0.68
3		0.37	0.57		0.52			0.76
4		0.34	0.76	0.57		0.51		0.48

Levels of infection of FHB

FHB - Background

- Types of resistance
 - Type I resistance to the fungus penetration
 - Type II resistance to the spread of the fungus within the head
 - Type III resistance to toxin production
 - Etc.
 - Resistances are independently inherited

Misting and floret inoculation

Does Type II Exist In Barley?!!

Table II.5. Mean number of <i>F. graminearum</i> infected kernels 21 days after point inoculations in two- and six-row genotypes in													
Experiments 1	1, 2 and	3. Geno	type	s are ranked b	y numb	per of infe	ctec	l kernels at eac	h exp	eriment.			
Exper	iment	1		Exper	iment	2		Exper	iment	: 3	Ме	an	
Genotype	No. o	f Infec-		Genotype	No. o	f Infec-		Genotype	enotype No. of Infec-		Genotype	enotype No. of I	
	ted K	Cernels			ted k	Kernels			ted	Kernels		ted K	ernels
22222222						T	wo-	row					
Misc. Cal. 21	0.6			Misc. Cal. 21	2.1			Zhedar 1	1.6		Misc. Cal. 21	1.5	
Gobernadora	1.8			Svanhals	2.2			Misc. Cal. 21	1.7		Svanhals	2.4	
Fredrickson	2.7			Zhedar 1	2.8			Gobernadora	1.9		Gobernadora	2.6	
Svanhals	3.0			Fredrickson	3.4			Fredrickson	2.0		Fredrickson	2.7	
Zhedar 1	4.2			Gobernadora	4.1			Svanhals	2.1		Zhedar 1	2.9	
Mean	2.5	A			2.9	А			1.9	A	Mean	2.4	Α
LSD _{0.05}	ns ^l				ns				ns			ns	
Six-row													
GD2-27	2.9	a [°]		Chevron	4.8	а		M95-4	1.6	а	Chevron	4.9	а
Chevron	3.2	ab		GD2-18	6.2	а		MNBrite	1.6	а	M95-4	5.1	а
Stander	5.0	abc		M95-4	7.2	ab		GD2-27	2.3	ab	GD2-27	5.1	а
Foster	6.6	abcd		Foster	8.2	abc		Stander	3.5	abc	Stander	5.8	а
Robust	7.5	bcd		M93-192	8.8	abc		M93-192	4.5	abcd	Foster	6.2	ab
M93-192	7.6	cd		Stander	10.5	bc		Foster	4.9	abcd	MNBrite	6.4	ab
M95-4	8.8	cde		MNS 93	10.8	bc		GD2-18	5.6	abcd	M93-192	6.5	ab
GD2-18	9.1	cde		MNBrite	11.1	bc		Chevron	6.1	bcd	GD2-18	6.7	ab
MNBrite	9.6	cde		Steptoe	11.9	С		Robust	6.9	cd	Robust	8.4	bc
MNS 93	9.7	cde		GD2-27	12.1	С		Steptoe	7.8	d	MNS 93	9.3	С
Steptoe	12.5	е		Robust	12.1	С		MNS 93	8.4	d	Steptoe	10.2	С
Mean	7.5	В			9.4	В			4.8	В		7.3	В
LSD _{0.05}	4.4				4.1				4.1			2.5	
H: means of tw	vo- and	six-row f	ollov	ved by different	capita	l letters a	t ea	ch experiment	are si	gnificantly c	lifferent (p & 0.05).		
^I : Numbers in	the sar	ne colum	n ar	e non-significar	nt at p	头 0.10.							
: means within	n the sa	ame colui	mn f	ollowed by the	same l	etter are	not	significantly dif	ferent	(p <u>&</u> 0.05).			

Does Type II Exist?!!

Spread of Infection

FHB Program

Main sources of resistance in barley based on data from the USA, Canada, China, Ecuador, Brazil and Uruguay

Genotype	Head Type	Genotype	Head Type
Atahualpa	2	Fredrickson	2
Azafrán (Misc. Cal.	. 21) 2	Gobernadora	2
Chamico	6	Humai 10	2
Chevron	6	PFC 88209	6
Shyri	2	Shenmai-3	2
Clho 4196	2	Svanhals	2
		Zhedar-1	2

FHB – Selected Genotypes

				Damage
			Damage	(%) Type
	Cross	Rows	(%) Type I	
1	TOCTE//GOB/HUMAI10/3/ATAH92/ALELI	2	5.6	7.1
2	PENCO/CHEVRON-BAR	6	1.5	17.3
3	ZHEDAR#1/SHYRI//OLMO	2	5.7	8.0
4	ATAH92/GOB	2	5.8	9.1
5	ATAH92/GOB	2	4.9	4.3
6	CANELA/ZHEDAR#2	2	5.3	5.3
7	MNS1	6	3.4	17.1
	ZHEDAR#1/4/SHYRI//GLORIA-			
	BAR/COPAL/3/SHYRI/GRIT/5/ARUPO/K8			
8	755//MORA	2	3.2	4.0
9	SVANHALS-BAR/MSEL//AZAF/GOB24DH	2	3.3	8.8
10	SVANHALS-BAR/MSEL//AZAF/GOB24DH	2	6.3	8.4
	Checks			
	AZAFRAN (MR-R)	2	8.5	8.3
	GOBDH83(R-R)	2	5.1	7.6
	GOBDH89(S-S)	2	13.4	27.7
	PENCO/CHEVRON-BAR (R-MR)	6	4.7	12.1

Collaboration with ARIs & Special Projects

U.S. Wheat and Barley Scab Initiative (USWBSI)

- Before USWBSI: deployment of sources of resistance after 1993
 - Deployment of germplasm originated from the FHB breeding program EGS – 150-200 lines/year
- China nursery participation with lines in advanced testing
- NABSEN cooperative multi-location nursery with elite lines
- Mining of new genes from ICARDA Gene Bank
- Pre-breeding program introgression of resistant genes into US germplasm pool.

Courtesy of Paul Schwarz, NDSU

I

I

U.S. Wheat and Barley Scab Initiative

Germplasm tested and deployed for the	e USWBSI b	y ICARD	A from 20	002 to 20	08		
Nursery Name	2002	2003	2004	2005	2006	2007	2008
Germplasm Deployed							
Early Generation Screening (EGS)	50	120	333	161	241	282	-
NABSEN	8	8	8	8	8	8	-
China nursery	93	60	60	100	100	110	114
Germplasm Tested							
NABSEN	54	54	54	54	54	54	-
ICARDA Genetics Resources Unit (New)							
Palestina					19		2
Ethiopia					295	155	87
ICARDA 2005					277	150	97
ICARDA 2006					1200	198	580
ICARDA 2007						1371	352
ICARDA 2008							1569

Diving into the gene pool

Do still are undiscovered sources of resistance somewhere?

A rational approach to exploiting large genetic resource collections

Kenneth Street, GRU, ICARDA

Almost 70,000 barley & landrace accessions registered in the global barley register

What genebank – which accessions ?

A needle in a haystack

Scientist wants a few hundred accessions to evaluate for a particular trait

How do they select a small subset likely to have the useful trait?

How can we increase the chance of finding what we want?

✓Limited resources \$\$\$

✓ Need a repeatable, rational method

Focusing in on the 'best bet' accessions

Focused Identification of Germplasm Strategy

Since the majority of the ICARDA genetic resource collection is geo-referenced we can plot the collection sites over a suite of agro-climatic and edaphic surfaces

Link environmental data to collection sites

Adapted from diagram by D T F Endresen (NGB)

Model environments that would favor selection pressure for a given trait and choose accessions from that environment for screening.

For diseases, select material from environments that favor high disease load % of UG99 resistant accessions predicted in small sets drawn from 7000 accessions screened for UG99 resistance

Method	% resistant accessions within set
Core	9.7%
Random	10.7%
FIGS-set 1 (PCA on total set)	13.8%
FIGS-set 2	17.8%

CIUSU

Distribution of collection sites for barely Net Blotch FIGS set accessions

Represents 734 accessions selected from a total of 67,664 barley landraces documented in the global barley register and currently being screened.

Alberta Agriculture - Canada

- Development of germplasm with multiple disease resistance
 - Screening for:
 - FHB
 - Stripe Rust
 - Scald
 - BYDV
- Use of germplasm in the program
 - Covered smut resistance
 - Net Blotch
 - Spot Blotch
 - Scald
- Over 2000 elite lines screened at 4 locations in Canada and 3 in Mexico
- Lines having resistance to 5 to 6 diseases were identified

Barley breeding lines having the best multiple

disease resistance to scald and FHB, , BYDV,

stripe rust and smuts. (Helm et al. 2005)

Barley Line	Scald	FHB	Net	BYDV	Stripe	Smuts
			Blotch		Rust	
H94050005	R	R	R	R	S	R
H94050009	R	R	R	R	S	R
H94050010	R	R	R	R	S	R
H94019001	R	R	R	R	S	R
H94039004	R	R	R	R	R	S
H94020198	R	R	R	R	S	R
H92066207	R	R	S	S	R	R
H92067002	R	R	S	S	R	R
H93014003	R	R	S	R	R	R
H93014014	R	R	R	S	R	R

Busch Agricultural Resources Inc. (BARI – Anheuser-Busch Co.)

Development of germplasm with multiple disease resistance:

- FHB & low DON
- BYDV
- Yellow rust
- Net blotch
- Scald
- Etc.
- Malting quality for ICARDA

Busch Agricultural Resources Inc. (BARI – Anheuser-Busch Co.) (Cont'd):

• Use of their malting barley varieties

- Legacy (6-row)
- Tradition (6-row)
- Merit (2-row)
- Generation of 11 populations in 2000
- Collaboration with malting quality testing

Objectives – Multiple Disease Resistance

Results of F7 at Toluca 2003

			FHB (Type I %)			
Population	Cross	No. Lines	Mean	Min	Max	
	LEGACY/4/TOCTE//GOB/HUMAI10/3/ATAH92/ALELI	110	3.34	0.13	16.93	
2	LEGACY//PENCO/CHEVRON-BAR	130	2.82	0.26	8.48	
3	LEGACY/3/SVANHALS-BAR/MSEL//AZAF/GOB24DH	110	5.01	0.64	14.56	
4	LEGACY/5/ATACO/BERMEJO//HIGO/3/CLN-B/80.5138//GLORIA-BAR/COPAL/4/CHEVRON-BAR	80	4.23	1.04	12.46	
5	LEGACY/CHAMICO	210	3.25	0.00	11.24	
6	MERIT,B//CANELA/ZHEDAR#2	40	4.77	1.29	8.84	
7.000	MERIT,B/4/GOB/HUMAI10//CANELA/3/ALELI	30	5.82	1.97	10.64	
8	6B89.2027/4/TOCTE//GOB/HUMA110/3/ATAH92/ALELI	10	10.28	5.47	17.93	
9	6B89.2027/CHAMICO	50	3.33	0.00	13.07	

• Lines that also show resistance to Yellow Rust, Scald, BYDV, Spot & Net Blotch, etc. and probably enhanced malting quality, in an attractive agronomic background

•Objectives are being reached

Program Highlights

LARP - Highlights Barley Program

- Other High Yielding germplasm:

- Australia
 - The University of Western Australia Report of the "Barley Improvement through germplasm Introduction, Evaluation and Enhancement" (Page 6):
 - The highest yielding lines from the earlier time of sowing were WABAR2332, T20559 and four CIMMYT/ICARDA lines. *The 20 highest yielding lines mainly came from CIMMYT/ICARDA*, which also produced very large grain."
 - "The highest yielding lines from the later time of sowing were two CIMMYT/ICARDA lines imported from Mexico (F.Cappettini)"

Central Brazil

Foram avaliados 60 materiais.

Tratamento	Rendimento	Class 1 ^a	Proteína (%)
	Desempenho Super	rior	(70)
CMM 414	11.830	61	10,6
CMM 681	9.700	82	13,0
CMM 404	9.338	62	11,0
CMM 348	9.299	89	11,4
CMM 374	9.289	83	9,1
CMM 691	9.026	94	12,3
CMM 814	8.986	90	12,0
CMM 4	8.966	94	12,0
CMM 915	8.951	90	11,6
CMM 376	8.609	84	11,9
BRS 180	5.556	84	9,8
	" (P)		Barran B
pers	Desempenho Infe	rior	and any all front to
CMM 304	4.287	95	8,9
CMM 936	4.085	89	11,0
CMM 696	3.725	95	12,3
CIMM 1	3.511	95	12,7
CMM 678	2.661	87	12,2

Conclusions

- FHB breeding at the ICARDA Program is based on pyramiding different sources and testing a wide base of genetic resources
- Global network allows access to genetic diversity and multi-location testing (e.g. USWBSI, BARI, Agri Food Canada and NARs)
- Screening for different resistance types makes it possible to identify complementary parents
- Different programs make different use of the same germplasm and obtain different results

Future

- Continue collaboration with ARIs and use germplasm developed and research results to help developing countries
- Continue screening gene banks not finished yet!
- Determine how different are the genes being used
- Introgress resistance into germplasm adapted to different countries
- More focus on molecular markers to accumulate resistance types and different genes/alleles - use of MAS (?)

Acknowledgements

- ICARDA Hugo Vivar, Jan Valkoun, Jan Konopka, Ken Street
- CIMMYT Lucy Gilchrist, Etienne Duveiller, Monica Mezzalama, Maarten van Ginkel, Tomohiro Ban, Janet Lewis, Javier Peña, Hans Braun, Jaime Segura, Francisco López, Vicente Morales, Bernardo Ramírez, Juan Ramírez, Ernesto López
- **USWBSI** Sue Canty, Rick Ward, David van Sanford
- Scherta Agriculture Jim Helm, Joseph Nyachiro, Pat Juskiw, Laura Leggott
- **BARI** Les Wright, Linnea Skoglund, Blake Cooper
- **UMN** Ruth Dill-Macky, Brian Steffenson, Kevin Smith, Ed Schiefelbein
- **NDSU** Rich Horsley, Stephen Neate, Jerry Franckowiak, Paul Schwarz
- Agriculture and Agri-Food Canada Bill Legge, James Tucker
- **Zhejiang University** Bingxin Zhang
- Filling Strain Silvia Pereyra, Silvia Germán, Juan Díaz
- EMBRAPA Brazil Gerardo Arias, Euclydes Minella, Renato Amabile

Scab Team at CIMMYT

Collaborative Research with Alberta Agriculture

4117 2 40 1 Total 1

Busch Agricultural Resources, Inc.

USWBSI Team at Toluca, México

Yunnan Province, China

